BMSCW LIBRARY QUESTION PAPER

M.Sc. - Mathematics I Semester End Examination - May 2022 Real Analysis

Course Code: MM102T Time: 3 hours QP Code: 11002 Total Marks: 70

Instructions: 1. Answer any FIVE questions 2. All questions carry equal marks

1 a) Evaluate $\int_0^3 x d\{[x]\}$, where [x] is the maximum integer function.

- b) If $f(x) \in R[\alpha(x)]$ on [a, b] then prove that $-f(x) \in R[\alpha(x)]$ on [a, b].
- c) If $f(x) \in R[\alpha(x)]$ on [a, b] and $|f| \le M$, then prove that $\left| \int_a^b f d\alpha \right| \le M[\alpha(b) \alpha(a)]$.
- 2 a) Assuming f(x) is monotonic on [a, b] and $\alpha(x)$ is monotonically increasing and continuous function on [a, b] prove that $f \in R(\alpha)$ on [a, b].

b) If $f \in R(\alpha)$ on [a, b], $f \in [m, M]$ and φ is continuous function of f on [m, M] then prove that $\varphi(f(x)) \in R(\alpha)$ on [a, b].

c) Give an example of a function f such that $|f| \in R(\alpha)$ on [0,1] and $|f| \notin R(\alpha)$ on [0,1].

(5+7+2)

(4+5+5)

3 a) Consider the function $\beta_1(x)$ and $\beta_2(x)$ defined as follows:

$$\beta_1(x) = \begin{cases} 0, when \ x \le 0\\ 1, when \ x > 0 \end{cases}$$
$$\beta_2(x) = \begin{cases} 0, when \ x < 0\\ 1, when \ x \ge 0 \end{cases}$$
Verify whether $\beta_1(x) \in R[\beta_2(x)]$ on $[-1,1]$.

b) If f and φ are continuous on [a, b] and φ is strictly increasing on [a, b] and Ψ is an inverse function of φ , then prove that $\int_a^b f(x) dx = \int_{\phi(a)}^{\phi(b)} f(\psi(\varphi)) d\psi(\varphi)$.

c) Show that a function of bounded variation on [a, b] is bounded. (7+4+3)

4 a) State and prove Weierstrass M- test.

- b) Show that $\{e^{-nx}\}$ is uniformly convergent on [a, b].
- c) Suppose $f_n \to f$ uniformly on [a, b] and if $x_0 \in [a, b]$ such that

$$\lim_{x \to x_0} f_n(x) = A_n, \quad n = 1, 2, 3, \dots \text{ then prove that}$$

i)
$$A_n$$
 convergent ii) $\lim_{x \to x_0} f_n(x) = \lim_{n \to \infty} f_n(x).$ (5+4+5)

BMSCW LIBRARY QUESTION PAPER

- 5 a) Prove the necessary and sufficient condition for a sequence $\{f_n\}$ of functions defined on a set *S* to be uniformly convergent is that for each $\in > 0$ there corresponds on such that $\forall n \ge m$, $\forall p \ge 0$ and $\forall x \in S$, $|f_{n+p}(x) f_n(x)| < \in$.
 - b) Let $\{f_n(x)\}$ be a sequence of functions uniformly converges to f(n) on [a, b] and each $f_n(x) \in R[a, b]$. Then prove that $f(n) \in R[a, b]$, also prove that $\lim_{n \to \infty} \int_a^x f_n(t) dt = \int_a^x f(t) dt \quad \forall x \in [a, b].$
 - c) Show that $\sum_{n=1}^{\infty} nxe^{-nx^2}$ converges pointwise and not uniformly on [0, k], k > 0.
- 6 a) State and prove Heine-Borel theorem.

b) Define a K-cell in \mathbb{R}^k . Let $I_1 \supset I_2 \supset I_3 \supset \cdots$ be a sequence of K-cell in \mathbb{R}^k show that $\bigcap_{n=1}^{\infty} I_n \neq \emptyset$. (8+6)

- 7 a) Let $E \subset \mathbb{R}^n$ be an open set $f: E \to \mathbb{R}^m$ is a map. Prove that if f is continuously differentiable if and only if the partial derivatives $D_j f_i$ exists and continuous on E for $1 \le i \le m, 1 \le j \le n$.
 - b) If $T_1, T_2 \in L(\mathbb{R}^n, \mathbb{R}^m)$, then prove that

i)
$$||T_1 + T_2|| \le ||T_1|| + ||T_2||$$

- ii) $\|\alpha T_1\| = |\alpha| \|T_1\|$
- c) Discuss the continuity of the function on R^2 of

$$f(x,y) = \begin{cases} \frac{x^2 y^2}{x^2 + y^2}, & x \neq 0, y \neq 0\\ 0, & x = 0, y = 0 \end{cases}$$
(7+4+3)

8. State and prove the implicit function theorem.

(14)

(5+5+4)
